Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38436415

RESUMO

CONTEXT: IGF signalling is known to affect human ovarian follicular function during growth and development. However, the role of the IGF system is unknown during the ovulatory peak, which is characterized by profound changes in granulosa cell (GCs) mitosis and function. OBJECTIVE: How is the IGF system expressed and regulated during the midcycle surge in women? DESIGN: Follicular fluid (FF) and granulosa cells (GCs) were collected during the ovulatory peak from two specific time-points. One sample was obtained before oocyte pick up (OPU): before ovulation trigger (OT) (T = 0 h) or at 12, 17, or 32 h after OT, and one sample was obtained at OPU 36 h after OT. SETTING: University hospital. PATIENTS/PARTICIPANTS: Fifty women undergoing ovarian stimulation were included. MAIN OUTCOME MEASURE: Gene expression profiles were assessed by microarray analysis of GCs. IGF-related proteins in the FF were assessed by using immunoassays or by determination of activity with a proteinase assay. RESULTS: Expression of proteins promoting IGF activity (i.e., IGF2, PAPPA, and IRS1) together with proliferation markers were downregulated on a transcriptional level in GCs after OT, whereas proteins inhibiting the IGF signal (i.e., IGFBPs, IGF2R, and STC1) were upregulated. STC1 gene expression and protein levels were greatly upregulated after OT with a parallel steep downregulation of PAPP-A proteolytic activity. CONCLUSIONS: These data suggest that downregulation of IGF signalling mediated by increased STC1 expression is instrumental for the sudden cessation in GC proliferation and onset of differentiation during the ovulatory peak.

2.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205651

RESUMO

Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer, and it exhibits a number of clinico-pathological characteristics distinct from the more common invasive ductal carcinoma (IDC). We set out to identify alterations in the tumor microenvironment (TME) of ILC. We used laser-capture microdissection to separate tumor epithelium from stroma in 23 ER+ ILC primary tumors. Gene expression analysis identified 45 genes involved in regulation of the extracellular matrix (ECM) that were enriched in the non-immune stroma of ILC, but not in non-immune stroma from ER+ IDC or normal breast. Of these, 10 were expressed in cancer-associated fibroblasts (CAFs) and were increased in ILC compared to IDC in bulk gene expression datasets, with PAPPA and TIMP2 being associated with better survival in ILC but not IDC. PAPPA, a gene involved in IGF-1 signaling, was the most enriched in the stroma compared to the tumor epithelial compartment in ILC. Analysis of PAPPA- and IGF1-associated genes identified a paracrine signaling pathway, and active PAPP-A was shown to be secreted from primary CAFs. This is the first study to demonstrate molecular differences in the TME between ILC and IDC identifying differences in matrix organization and growth factor signaling pathways.

3.
Elife ; 92020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32293560

RESUMO

Human patients carrying PAPP-A2 inactivating mutations have low bone mineral density. The underlying mechanisms for this reduced calcification are poorly understood. Using a zebrafish model, we report that Papp-aa regulates bone calcification by promoting Ca2+-transporting epithelial cell (ionocyte) quiescence-proliferation transition. Ionocytes, which are normally quiescent, re-enter the cell cycle under low [Ca2+] stress. Genetic deletion of Papp-aa, but not the closely related Papp-ab, abolished ionocyte proliferation and reduced calcified bone mass. Loss of Papp-aa expression or activity resulted in diminished IGF1 receptor-Akt-Tor signaling in ionocytes. Under low Ca2+ stress, Papp-aa cleaved Igfbp5a. Under normal conditions, however, Papp-aa proteinase activity was suppressed and IGFs were sequestered in the IGF/Igfbp complex. Pharmacological disruption of the IGF/Igfbp complex or adding free IGF1 activated IGF signaling and promoted ionocyte proliferation. These findings suggest that Papp-aa-mediated local Igfbp5a cleavage functions as a [Ca2+]-regulated molecular switch linking IGF signaling to bone calcification by stimulating epithelial cell quiescence-proliferation transition under low Ca2+ stress.


Assuntos
Calcificação Fisiológica/fisiologia , Células Epiteliais/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Metaloendopeptidases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proliferação de Células/fisiologia , Peixe-Zebra
4.
Sci Rep ; 9(1): 13231, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519945

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) is a key regulator of insulin-like growth factor (IGF) bioactivity, by releasing the IGFs from their corresponding IGF-binding proteins (IGFBPs). The minor allele of the single nucleotide polymorphism (SNP), rs7020782 (serine < tyrosine), in PAPPA has previously been associated with recurrent pregnancy loss as well as with significant reduced levels of PAPP-A protein in human ovarian follicles. The aim of the present study was to reveal a possible functional effect of the rs7020782 SNP in PAPPA by comparing recombinant PAPP-A proteins from transfected human embryonic kidney 293 T cells. The proteolytic cleavage of IGFBP-4 was shown to be affected by the rs7020782 SNP in PAPPA, showing a significantly reduced cleavage rate for the serine variant compared to the tyrosine variant (p-value < 0.001). The serine variant also showed a trend towards reduced cleavage rates, that was not significant, towards IGFBP-2 and IGFBP-5 compared to the tyrosine variant. No differences were found when analysing cell surface binding, complex formation between PAPP-A and STC2 or proMBP, nor when analysing STC1 inhibition of PAPP-A-mediated IGFBP-4 cleavage. Regulation of IGF bioactivity in reproductive tissues is important and the rs7020782 SNP in PAPPA may disturb this regulation by altering the specific activity of PAPP-A.


Assuntos
Glicoproteínas/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Polimorfismo de Nucleotídeo Único , Proteína Plasmática A Associada à Gravidez/genética , Feminino , Glicoproteínas/genética , Células HEK293 , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Gravidez , Proteína Plasmática A Associada à Gravidez/metabolismo , Ligação Proteica , Proteólise
5.
J Natl Cancer Inst ; 111(9): 970-982, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698726

RESUMO

BACKGROUND: Ewing sarcoma (EWS) manifests one of the lowest somatic mutation rates of any cancer, leading to a scarcity of druggable mutations and neoantigens. Immunotherapeutics targeting differentially expressed cell surface antigens could provide therapeutic benefit for such tumors. Pregnancy-associated plasma protein A (PAPP-A) is a cell membrane-associated proteinase produced by the placenta that promotes fetal growth by inducing insulinlike growth factor (IGF) signaling. METHODS: By comparing RNA expression of cell surface proteins in EWS (n = 120) versus normal tissues (n = 42), we comprehensively characterized the surfaceome of EWS to identify highly differentially expressed molecules. Using CRISPR/Cas-9 and anti-PAPP-A antibodies, we investigated biological roles for PAPP-A in EWS in vitro and in vivo in NSG xenograft models and performed RNA-sequencing on PAPPA knockout clones (n = 5) and controls (n = 3). All statistical tests were two-sided. RESULTS: EWS surfaceome analysis identified 11 highly differentially overexpressed genes, with PAPPA ranking second in differential expression. In EWS cell lines, genetic knockout of PAPPA and treatment with anti-PAPP-A antibodies revealed an essential survival role by regulating local IGF-1 bioavailability. MAb-mediated PAPPA inhibition diminished EWS growth in orthotopic xenografts (leg area mm2 at day 49 IgG2a control (CTRL) [n = 14], mean = 397.0, SD = 86.1 vs anti-PAPP-A [n = 14], mean = 311.7, SD = 155.0; P = .03; median OS anti-PAPP-A = 52.5 days, 95% CI = 46.0 to 63.0 days vs IgG2a = 45.0 days, 95% CI = 42.0 to 52.0 days; P = .02) and improved the efficacy of anti-IGF-1R treatment (leg area mm2 at day 49 anti-PAPP-A + anti-IGF-1R [n = 15], mean = 217.9, SD = 148.5 vs IgG2a-CTRL; P < .001; median OS anti-PAPP-A + anti-IGF1R = 63.0 days, 95% CI = 52.0 to 67.0 days vs IgG2a-CTRL; P < .001). Unexpectedly, PAPPA knockout in EWS cell lines induced interferon (IFN)-response genes, including proteins associated with antigen processing/presentation. Consistently, gene expression profiles in PAPPA-low EWS tumors were enriched for immune response pathways. CONCLUSION: This work provides a comprehensive characterization of the surfaceome of EWS, credentials PAPP-A as a highly differentially expressed therapeutic target, and discovers a novel link between IGF-1 signaling and immune evasion in cancer, thus implicating shared mechanisms of immune evasion between EWS and the placenta.


Assuntos
Proteína Plasmática A Associada à Gravidez/metabolismo , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/metabolismo , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Sarcoma de Ewing/mortalidade , Sarcoma de Ewing/patologia , Transdução de Sinais , Transcriptoma , Carga Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Growth Horm IGF Res ; 42-43: 14-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071469

RESUMO

The IGF axis is represented by two growth factors (IGF1 and IGF2), two cognate cell surface receptors (IGF1R and IGF2R), six soluble high affinity IGF binding proteins (IGFBP1-6) and several IGFBP proteases. IGF1 and IGF2 are present at high concentrations in bone and play a crucial role in the maintenance and differentiation of both foetal and adult skeleton. In order to understand the role of the IGF axis in bone and other tissues it is necessary to profile the expression and activity of all genes in the axis together with the activity of relevant ancillary proteins (including IGFBP proteases). In the current report we used differentiating human dental pulp cells (hDPC) to examine the expression and activity of the IGF axis during osteogenic differentiation of these cells. We found that, with the exception of IGF1 and IGFBP1, all components of the IGF axis are expressed in hDPCs. IGFBP-4 is the most abundantly expressed IGFBP species at both mRNA and protein levels under both basal and osteogenic conditions. Although we found no difference in IGFBP-4 expression under osteogenic conditions, we report increased expression and activity of pregnancy associated plasma protein-A (PAPP-A - an IGFBP-4 proteinase) leading to increased IGFBP-4 proteolysis in differentiating cell cultures. Further to this we report increased expression of IGF-2 (an activator of PAPP-A), and decreased expression of stanniocalcin-2 (STC2- a recently discovered inhibitor of PAPP-A) under osteogenic conditions. We also demonstrate that STC2 and PAPP-A are able to form complexes in hDPC conditioned medium indicating the potential for regulation of IGFBP-4 proteolysis through this mechanism. We suggest that these changes in the expression and activity of the IGF axis may represent part of an osteogenic signature characteristic of differentiating hDPCs.


Assuntos
Polpa Dentária/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteína Plasmática A Associada à Gravidez/metabolismo , Diferenciação Celular , Células Cultivadas , Polpa Dentária/citologia , Regulação da Expressão Gênica , Humanos , Osteoblastos/citologia , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-29503631

RESUMO

The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

9.
Fertil Steril ; 106(7): 1778-1786.e8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27793387

RESUMO

OBJECTIVE: To reveal a possible relationship between two single nucleotide polymorphisms (SNPs) in PAPP-A-1224 (rs7020782) and 327 (rs12375498)-and the level and activity of PAPP-A in follicular fluid (FF) of human small antral follicles, and to analyze the intrafollicular hormone levels. DESIGN: Laboratory investigation. SETTING: University hospital. PATIENT(S): Fifty volunteer women who contributed a total of 210 samples of FF from normal small antral follicles. INTERVENTION(S): Genotyping and measurement of antigen levels of steroids, PAPP-A, stanniocalcin-2 (STC2), and antimüllerian hormone (AMH) plus activity of PAPP-A toward insulin-like growth factor binding protein 4 (IGFBP-4). MAIN OUTCOME MEASURE(S): Measurement of PAPP-A levels and hormones with enzyme-linked immunosorbent assay (ELISA) and PAPP-A activity toward radiolabeled IGFBP-4. RESULT(S): Women homozygous for the minor C allele of the 1224 SNP showed a statistically significantly lower level of PAPP-A protein and activity in FF compared with women carrying the major A allele. These women also displayed nonsignificant reduced levels of estradiol and increased levels of AMH and androgen. A statistically significant correlation between FF levels of PAPP-A activity and the molar ratio of PAPP-A/STC2 was obtained. The 327 SNP did not show statistically significant associations. CONCLUSION(S): This study presents a statistically significant effect of the 1224 SNP on the level and activity of PAPP-A in human follicles, suggesting that the FF level of bioactive insulin-like growth factor depends on the genotype. We observed STC2 to be an important regulator of PAPP-A in human FF. The 1224 SNP has previously been associated with recurrent pregnancy loss, so further evaluation of an underlying mechanism including aberrant control of insulin-like growth factor activity is warranted.


Assuntos
Líquido Folicular/química , Folículo Ovariano/química , Polimorfismo de Nucleotídeo Único , Proteína Plasmática A Associada à Gravidez/análise , Proteína Plasmática A Associada à Gravidez/genética , Adulto , Hormônio Antimülleriano/análise , Feminino , Frequência do Gene , Glicoproteínas/análise , Hormônios Esteroides Gonadais/análise , Heterozigoto , Homozigoto , Hospitais Universitários , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , Desequilíbrio de Ligação , Folículo Ovariano/citologia , Fenótipo , Adulto Jovem
10.
Nat Commun ; 7: 11673, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27221344

RESUMO

Bacterial members of the neurotransmitter:sodium symporter (NSS) family perform Na(+)-dependent amino-acid uptake and extrude H(+) in return. Previous NSS structures represent intermediates of Na(+)/substrate binding or intracellular release, but not the inward-to-outward return transition. Here we report crystal structures of Aquifex aeolicus LeuT in an outward-oriented, Na(+)- and substrate-free state likely to be H(+)-occluded. We find a remarkable rotation of the conserved Leu25 into the empty substrate-binding pocket and rearrangements of the empty Na(+) sites. Mutational studies of the equivalent Leu99 in the human serotonin transporter show a critical role of this residue on the transport rate. Molecular dynamics simulations show that extracellular Na(+) is blocked unless Leu25 is rotated out of the substrate-binding pocket. We propose that Leu25 facilitates the inward-to-outward transition by compensating a Na(+)- and substrate-free state and acts as the gatekeeper for Na(+) binding that prevents leak in inward-outward return transitions.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/isolamento & purificação , Escherichia coli , Células HEK293 , Humanos , Leucina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Sódio/metabolismo
11.
PLoS Comput Biol ; 7(10): e1002246, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046120

RESUMO

Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na(+)-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport.


Assuntos
Modelos Biológicos , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Sítios de Ligação , Citoplasma/química , Citoplasma/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Sódio/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...